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Casimir torques between anisotropic boundaries in nematic liquid crystals
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Fluctuation-induced interactions between anisotropic objects immersed in a nematic liquid crystal are shown
to depend on the relative orientation of these objects. The resulting long-range ‘‘Casimir’’ torques are explicitly
calculated for a simple geometry where elastic effects are absent. Our study generalizes previous discussions
restricted to the case of isotropic walls, and leads to new proposals for experimental tests of Casimir forces and
torques in nematics.
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In the last decade, much theoretical attention has b
paid to ‘‘Casimir’’ forces in structured complex fluids@1–3#.
The pioneering work of Casimir showed that two uncharg
conducting plates attract each other in vacuum, due to
modification of the electromagnetic fluctuations imposed
the plates@4#. In complex fluids, similar interactions shou
exist between embedded objects, as the thermal fluctua
of the medium’s elastic distortions are restrained by
boundary conditions imposed by the objects. These inte
tions are believed to act between bounding surfaces or
mersed inclusions in critical fluids or superfluids@5,6#, in
liquid crystals @7–10#, in bilayer membranes@11–13#, and
also between rodlike polyelectrolytes@14–17#. Nematic liq-
uid crystals are anisotropic fluids with a quadrupolar lon
range order. They are considered as good candidates fo
direct observation of ‘‘Casimir’’ interactions in complex flu
ids. However, clear experimental evidences have to d
been scarce@2#. This is probably due to the weakness
fluctuation-induced effects when compared to that of perm
nent elastic distortions, which are often present.

Although nematic liquid crystals are well known to di
play orientational effects@18#, no ‘‘Casimir’’ interaction di-
rectly connected to these orientational properties of nema
have so far been discussed. Here, we demonstrate that
mal fluctuations in nematic liquid crystals can inducetorques
between bounding surfaces@19#. The existence of ‘‘Casimir’’
torques between objects embedded in complex fluids is
ally caused by the anisotropy in theshapeof the objects
@12,15,17#; here we report on a more subtle effect occurri
between infinite plates with translational symmetry. To e
phasize the ‘‘Casimir’’ effect, we focus on a situation
which no average elastic distortion is present: two para
plates with a surface energy favoring an orientation of
local average molecular alignment~director! perpendicular
to the surfaces. The ground state is therefore the distors
less state in which the director is everywhere perpendic
to the boundaries. A ‘‘Casimir’’ torque can arise due to t
anisotropyin the rigidity of the surface energy: we assum
that deviations from the preferred normal surface orienta
is easier in one direction than in the orthogonal one.~This
property can be experimentally obtained from a grating s
face treated for homeotropic anchoring@20#, or by depositing
on top of a substrate that is conventionally treated to g
planar anchoring a very thin layer of a material promoti
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homeotropic anchoring@21#.! In this geometry, we calculate
the ‘‘Casimir’’ interaction, and show that it depends not on
on the distance between the two plates, but also on t
relative orientation. At the end of the paper, we argue t
this leads to effects easier to measure than the direct f
between the plates.

Most nematic liquid crystals are liquids of rodlike mo
ecules displaying a long-range orientational order. The lo
average molecular axis is represented by a unit vector6n,
called the ‘‘director.’’ The bulk ground state corresponds to
uniform director field and the Frank elasticity describes
free energy associated with gradients of the director@22#.
Bounding plates often favor some orientation of the direct
this phenomenon is known asanchoring@18#. The simplest
situations correspond to a preferred orientation normal to
plates~homeotropic anchoring! or parallel to the plates~pla-
nar anchoring!. Here we employ a path integral method
study the ‘‘Casimir’’ energy of a nematic liquid crystal con
fined between two parallel plates at a separationd, at which
we assume an homeotropic anchoring with anisotro
strength as described above. We calculate the fluctuat
induced interaction between the two plates when the axe
weakest anchoring strength are placed at a relative angu
~see Fig. 1!, and find

F~u,d!52
kBT

8pd2
3 (

k51

`
cosk 2u

k3 , ~1!

per unit area of the plates. The angle dependence in
interaction shows that the plates experience a long-ra
fluctuation-induced torque, that decays algebraically as 1d2,
and tends to align the directions of weakest rigidity.

We start with the broken symmetry configuration of low
est energy, in which the director field is aligned along thz

axis, and restrict ourselves to small fluctuationsdn5n2 ẑ of
the director around this ground state~see Fig. 1!. The bulk
cost of such a fluctuation can be described by an effec
Hamiltonian

H5
K

2E E E d3r @¹dn~r !#2, ~2!
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which corresponds to the usual one-constant (K) approxima-
tion of the Frank elasticity@22,18#. The anisotropic homeo
tropic anchoring surface energy is accounted for by the
face Hamiltonian

Hs5
1

2E E d2r'~dn2
•W2

•dn21dn1
•W1

•dn1!, ~3!

where dn2(r')5dn(r',0) and dn1(r')5dn(r' ,d), and
W2 andW1 are positive definite constant tensors that en
the anisotropy of the surfaces and their relative orientat
We assume that the two surfaces are identical in nature
we define W25Wmaxx̂2

^ x̂21Wmin ŷ2
^ ŷ2 and W1

5Wmaxx̂1
^ x̂11Wmin ŷ1

^ ŷ1, wherex̂6 andŷ6 denote the
hard and weak axis on plate6, respectively~see Fig. 1!. The
eigenvaluesWmax and Wmin naturally define two extrapola
tion lengthslmin5K/Wmax and lmax5K/Wmin @18#. We as-
sume extreme anisotropy, namely,lmin!lmax.

‘‘Casimir’’ effects arise from the quantization of the fluc
tuation modes by the boundaries~essentially from the sup
pression of modes of wave vector smaller than 2p/d). The
actual effect of the boundaries on a fluctuation mode of w
vectorq.2p/d is a function of the productql, wherel is
the extrapolation length corresponding to the considered
larization of the fluctuation. Depending on the relative valu

FIG. 1. Sketch of a fluctuation of the bulk director fieldn(r )

~thin line! around its mean valueẑ ~bold line!. The two anisotropic
plates impose a homeotropic anchoring~i.e., the preferred surface

value ofn is ẑ) characterized by an anisotropic anchoring elastic

deviations fromẑ are easier in the ‘‘soft’’ directionsŷ6 than in the

‘‘hard’’ directions x̂6. In this geometry, the fluctuation-induce
‘‘Casimir’’ interaction between the plates depends both on th
separationd and their relative angleu.
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of lmin , lmax, andd, three different regimes occur:~i! For
lmin!lmax!d the constraints are effectively hard in bo
directions and the anisotropy is washed out at leading or
~ii ! For lmin!d!lmax the director field is subject to a har
constraint in thex direction while it is virtually free in the
~perpendicular! y direction. ~iii ! Finally, for d!lmin!lmax
both directions allows almost free fluctuations and the
isotropy is lost again at leading order. To emphasize the
fect of the anisotropy, we thus focus on the case wh
lmin!d!lmax.

Following Ref.@7#, we now proceed to calculate the pa
tition function for the director fluctuations, usingH1Hs as
the total Hamiltonian. The quantum mechanical descript
of the partition function@7#, which treatsz as an imaginary
time variable, helps us to gain a useful insight into the me
ing of the boundary conditions. From the ‘‘imaginary tim
action’’ H, one can define the ‘‘momentum’’ conjugate to
component ofdn as Pdn5K]zdn. Then, one can go from
coordinate space to momentum space. In particular, at
boundaries one finds out thatPdn is quadratically confined
by the tensorW21 and thus acts opposite as compared todn.
In other words, there is an uncertainty principle relating t
fluctuations ofdn and ]zdn as D(dn)D(]zdn).kBT/K. In
light of this, one can argue that the boundary condition
nearly free fluctuations in the soft direction is asymptotica
equivalent to setting]zdn50. Note that this is equivalent to
assuming that the directors cannot bear torques due to
freedom of rotation in the soft direction.

With the above justification, we can employ a somewh
less involved path integral formulation@1,6# using the fol-
lowing boundary conditions:dn6

• x̂650, ]zdn6
• ŷ650.

The partition function of the fluctuating director field subje
to the above constraints can be written as

Z5E Ddn~r !d@dn2
• x̂2#d@]zdn2

• ŷ2#

3d@dn1
• x̂1#d@]zdn1

• x̂1#e2H/kBT. ~4!

The functional delta functions can be written as integral r
resentations by introducing four Lagrange multiplier surfa
fields:

Z5E Ddn~r !Dl 1~r'!Dl 2~r'!Dl 3~r'!Dl 4~r'!

3expH 2
k

2E E E d3r @¹dn~r !#2

1 i E E d2r'@ l 1~r'!dn2~r'!• x̂2

1 l 2~r'!]zdn2~r'!• ŷ21 l 3~r'!dn1~r'!• x̂1

1 l 4~r'!]zdn1~r'!• ŷ1#J , ~5!

wherek5K/kBT. The integration over the director field i
now Gaussian and can be easily performed. It yields

:

ir
1-2
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Z5E Dl 1~q'!Dl 2~q'!Dl 3~q'!Dl 4~q'!expH 2
1

4k (
a,b51

4 E E d2q'

~2p!2
l a~2q'!Mab~q'!l b~q'!J , ~6!

in which

M~q!53
1

q
0

e2qd

q
cosu 2e2qd sinu

0 2q e2qd sinu 2qe2qd cosu

e2qd

q
cosu e2qd sinu

1

q
0

2e2qd sinu 2qe2qd cosu 0 2q

4 , ~7!
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whereu is the angle between the corresponding soft axe
the two plates~see Fig. 1!. The remaining integration ove
the Lagrange multiplier fields can be performed to g

ln Z52 1
2 (q'

ln@detM(q')#, which leads to a simple ex
pression for the free energy per unit area:

F~u,d!5
kBT

2pd2E0

`

du u ln@12e22u cos 2u#. ~8!

Integration overu then gives the final result, Eq.~1!, above.
The function f (u)5(k51

` cosk(2u)/k3 that describes the ori
entational dependence of the interaction has the structure
zeta function that is commonly present in ‘‘Casimir’’ inte
actions.

It is instructive to examine the limiting cases of plates
which the corresponding hard and soft axes are paralle
perpendicular to each other. Foru50 the boundary condi-
tions correspond to a hard-hard configuration for one co
ponent ofdn and a soft-soft one for the other. One can che
that f (0)5z(3).1.202 06 (z is the zeta function!, thus we
obtain exactly the same expression for the ‘‘Casimir’’ ener
as in Ref.@7# for ‘‘alike’’ boundary conditions. On the othe
hand f (p/2)52 3

4z(3), which gives the same result as
Ref. @7# for ‘‘unlike’’ boundary conditions (u5p/2 corre-
sponds to a soft-hard configuration for both components
dn).

Our calculation suggests two kinds of experiments:~i! a
direct measure of the torque exerted between two plates
fixed separation, and~ii ! a measure of force as a function
separation for plates at various angles.
od
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A possible experimental setup for the direct observat
of the fluctuation-induced torque could be a torsion pen
lum similar to the one discussed in Ref.@23#. Our results
imply that the torsion coefficient of the pendulumk ~defined
as the ratio between the torquet and the angular rotation
Du) is corrected atu50 by an amount

Dk5
p2

12

kBTR2

d2
, ~9!

due to the ‘‘Casimir’’ effect. HereR is the radius of the
plates of area pR2. Using the typical valueskBT
54.1310214 dyn cm, R51.5 cm, d51024 cm, one ob-
tains Dk;1025 dyn cm. This accuracy may be reachab
using modern micromanipulation techniques.

A measure of the force-distance relation for vario
anglesu could also be performed. An advantage of this p
cedure, as compared to measurement of the ‘‘simpler’’ eff
corresponding to isotropic anchoring, is that relative effe
are more easily detectable. Indeed, while the weak signa
the ‘‘Casimir’’ force can be swamped by stronger effec
~Van der Waals, etc.!, the difference between measuremen
performed atu50° andu590° should provide a differentia
evidence of the Casimir scaling.

We are grateful to R. Barberi, I. Dozov, P. Galatola, a
L. Peliti for invaluable discussions and comments. This
search was supported in part by the National Science Fo
dation under Grant No. DMR-98-05833, and by ESPCI
one of us~R.G.!.
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