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Casimir torques between anisotropic boundaries in nematic liquid crystals
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Fluctuation-induced interactions between anisotropic objects immersed in a nematic liquid crystal are shown
to depend on the relative orientation of these objects. The resulting long-range “Casimir” torques are explicitly
calculated for a simple geometry where elastic effects are absent. Our study generalizes previous discussions
restricted to the case of isotropic walls, and leads to new proposals for experimental tests of Casimir forces and
torques in nematics.
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In the last decade, much theoretical attention has beenomeotropic anchorinf21].) In this geometry, we calculate
paid to “Casimir” forces in structured complex fluidé—3].  the “Casimir” interaction, and show that it depends not only
The pioneering work of Casimir showed that two unchargedn the distance between the two plates, but also on their
conducting plates attract each other in vacuum, due to theelative orientation. At the end of the paper, we argue that
modification of the electromagnetic fluctuations imposed bythis leads to effects easier to measure than the direct force
the plateg4]. In complex fluids, similar interactions should between the plates.
exist between embedded objects, as the thermal fluctuations Most nematic liquid crystals are liquids of rodlike mol-
of the medium's elastic distortions are restrained by theecules displaying a long-range orientational order. The local
boundary conditions imposed by the objects. These interac@verage molecular axis is represented by a unit vettor
tions are believed to act between bounding surfaces or intalled the “director.” The bulk ground state corresponds to a
mersed inclusions in critical fluids or Superﬂuiﬂﬁ'(s], in uniform director field and the Frank elasticity describes the
liquid crystals[7-10], in bilayer membrane§l1-13, and free energy associated with gradients of the dire¢2s).
also between rodlike polyelectrolytgs4—17. Nematic lig- Bounding plates often favor some orientation of the director:
uid crystals are anisotropic fluids with a quadrupolar long-this phenomenon is known @choring[18]. The simplest
range order. They are considered as good candidates for tigguations correspond to a preferred orientation normal to the
direct observation of “Casimir” interactions in complex flu- Plates(homeotropic anchoringr parallel to the plategpla-
ids. However, clear experimental evidences have to datBar anchoring Here we employ a path integral method to
been scarcg2]. This is probably due to the weakness of Study the “Casimir” energy of a nematic liquid crystal con-
fluctuation-induced effects when compared to that of permafined between two parallel plates at a separatipat which

nent elastic distortions, which are often present. we assume an homeotropic anchoring with anisotropic
Although nematic liquid crystals are well known to dis- strength as described above. We calculate the fluctuation-
play orientational effectf18], no “Casimir” interaction di-  induced interaction between the two plates when the axes of

rectly connected to these orientational properties of nematic&eakest anchoring strength are placed at a relative ahgle
have so far been discussed. Here, we demonstrate that thépee Fig. 1, and find

mal fluctuations in nematic liquid crystals can inducejues

between bounding surfacgs9]. The existence of “Casimir” w

torques between objects embedded in complex fluids is usu- F(6,d)=— keT > cos 29 (1)

ally caused by the anisotropy in trghapeof the objects ’ md2 &L K

[12,15,17; here we report on a more subtle effect occurring

between infinite plates with translational symmetry. To em-

phasize the “Casimir” effect, we focus on a situation in Per unit area of the plates. The angle dependence in this
which no average elastic distortion is present: two paralleinteraction shows that the plates experience a long-range
plates with a surface energy favoring an orientation of thefluctuation-induced torque, that decays algebraically €8, 1/
local average molecular alignmefdirectop perpendicular ~and tends to align the directions of weakest rigidity.

to the surfaces. The ground state is therefore the distorsion- We start with the broken symmetry configuration of low-
less state in which the director is everywhere perpendicula@st energy, in which the director field is aligned along zhe
to the boundaries. A “Casimir” torque can arise due to theaxis, and restrict ourselves to small fluctuatigims=n— z of
anisotropyin the rigidity of the surface energy: we assumethe director around this ground staee Fig. 1 The bulk
that deviations from the preferred normal surface orientatiortost of such a fluctuation can be described by an effective
is easier in one direction than in the orthogonal offéhis  Hamiltonian

property can be experimentally obtained from a grating sur-

face treated for homeotropic anchorirf], or by depositing

on top of a substrate that is conventionally treated to give M= Ef f j &3 [V on(r)]? )
planar anchoring a very thin layer of a material promoting 2 '
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of Nmin» Amax,» @ndd, three different regimes occui) For
AminAmax<d the constraints are effectively hard in both
directions and the anisotropy is washed out at leading order.
(i) For N min<<d<<\ hax the director field is subject to a hard
constraint in thex direction while it is virtually free in the
(perpendiculary direction. (i) Finally, for d<<\ pin<<\max
both directions allows almost free fluctuations and the an-
isotropy is lost again at leading order. To emphasize the ef-
fect of the anisotropy, we thus focus on the case where
Amin<d<7\max-

Following Ref.[7], we now proceed to calculate the par-
tition function for the director fluctuations, usirfg+ Hs as
the total Hamiltonian. The quantum mechanical description
of the partition function[7], which treatsz as an imaginary
time variable, helps us to gain a useful insight into the mean-
ing of the boundary conditions. From the “imaginary time
action” H, one can define the “momentum” conjugate to a
component ofén as Pz,=Kd,én. Then, one can go from
coordinate space to momentum space. In particular, at the
boundaries one finds out th&, is quadratically confined
by the tensoW ! and thus acts opposite as comparediio
/ In other words, there is an uncertainty principle relating the
| fluctuations ofén and d,6n asA(Sn)A(d,6n)=kgT/K. In
light of this, one can argue that the boundary condition of

FIG. 1. Sketch of a fluctuation of the bulk director fieddr)  nearly free fluctuations in the soft direction is asymptotically
(thin line) around its mean value (bold line). The two anisotropic ~ equivalent to setting,sn=0. Note that this is equivalent to
plates impose a homeotropic anchorifig., the preferred surface assuming that the directors cannot bear torques due to the
value ofn is 7) characterized by an anisotropic anchoring elasticity: freedom of rotation in the soft direction.
deviations fromz are easier in the “soft” directiong™ than in the With the above justification, we can employ a somewhat
“hard"” directions X*. In this geometry, the fluctuation-induced !€SS involved path integral formulatidi,6] using the fol-
“Casimir” interaction between the plates depends both on theirlowing boundary conditions:sn™-x*=0, 4,6n"-y*=0.
separatiord and their relative anglé. The partition function of the fluctuating director field subject
to the above constraints can be written as

which corresponds to the usual one-const#it §pproxima-
tion of the Frank elasticity22,18. The anisotropic homeo-
tropic anchoring surface energy is accounted for by the sur-
face Hamiltonian

z=f Dn(r)s[on~-x"18[d,6n" -y~ ]
X o[ ont-xt18[a,0nT - x"e ke, (4)

1
_ 2 - W -
HS_EJ f d*r (8n"-W™-sn"+n"-W"-on"), (3)  The functional delta functions can be written as integral rep-
resentations by introducing four Lagrange multiplier surface
where on~(r,)=on(r,,0) and on*(r,)=an(r, ,d), and fields:
W~ andW™ are positive definite constant tensors that entail

the anisotropy of the surfaces and their relative orientation.

We assumept%at the two surfaces are identical in nature and =) DOMNPI(r)Dla(r)Dls(r)Dly(ry)

we define W™ =W X ®X +Wpiny ®©y~ and W* p

=WaX X"+ Wi, y" ©y", wherex™ andy™ denote the XEXP{ - EJ f J' d3r[Van(r)]?

hard and weak axis on plate, respectivelysee Fig. L The

eigenvaluesiV,,,, and W, naturally define two extrapola- _ ) B N

tion lengths\ min=K/Wmax aNd A masx= K/ Wi [18]. We as- +'f j dor [ly(rp)én=(ry)-x

sume extreme anisotropy, Nnamelyin<\ max- . A
“Casimir” effects arise from the quantization of the fluc- +15(r )a,6n"(r ).y +lg(r )dn™(r)-x*

tuation modes by the boundariésssentially from the sup-

pression of modes of wave vector smaller thar/@). The 4 |4(rl)&25n+(u).9+] ’ (5)

actual effect of the boundaries on a fluctuation mode of wave

vectorq=2x/d is a function of the produaj\, where\ is
the extrapolation length corresponding to the considered povhere k=K/kgT. The integration over the director field is
larization of the fluctuation. Depending on the relative valuesnow Gaussian and can be easily performed. It yields
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where# is the angle between the corresponding soft axes of A possible experimental setup for the direct observation

the two plates(see Fig. 1L The remaining integration over

of the fluctuation-induced torque could be a torsion pendu-

the Lagrange multiplier fields can be performed to givelum similar to the one discussed in R¢23]. Our results

InZ=— %Eq In[detM(q, )], which leads to a simple ex-
N
pression for the free energy per unit area:

kgT

F(6,d)=
(6:) 27d?

f duuln[1—e 2“cos 24]. (8)
0

Integration ovew then gives the final result, E¢l), above.
The functionf(8)=2y_, cos(26)/k® that describes the ori-

entational dependence of the interaction has the structure of

zeta function that is commonly present in “Casimir” inter-
actions.

It is instructive to examine the limiting cases of plates in
which the corresponding hard and soft axes are parallel or

perpendicular to each other. F6=0 the boundary condi-

tions correspond to a hard-hard configuration for one CorTllcorresponding to isotropic anchoring, is that relative effects

ponent ofén and a soft-soft one for the other. One can chec
that f(0)=¢(3)=1.202 06 ¢ is the zeta functiop thus we
obtain exactly the same expression for the “Casimir”
as in Ref[7] for “alike” boundary conditions. On the other
hand f(7/2)=—2£(3), which gives the same result as in
Ref. [7] for “unlike” boundary conditions ¢=m/2 corre-

imply that the torsion coefficient of the penduluatidefined
as the ratio between the torqueand the angular rotation
A0) is corrected ap=0 by an amount

7 kgTR?
aEvir

©

due to the “Casimir” effect. HereR is the radius of the
pallates of areawR?. Using the typical valueskgT
=4.1x10 * dyncm, R=1.5 cm, d=10"* cm, one ob-
tains Ak~10"° dyncm. This accuracy may be reachable
using modern micromanipulation techniques.

A measure of the force-distance relation for various
anglesé could also be performed. An advantage of this pro-
cedure, as compared to measurement of the “simpler” effect

are more easily detectable. Indeed, while the weak signal of

the “Casimir” force can be swamped by stronger effects
energy

(Van der Waals, etg,. the difference between measurements
performed a¥=0° andd=90° should provide a differential
evidence of the Casimir scaling.

sponds to a soft-hard configuration for both components of

on).
Our calculation suggests two kinds of experimelisa
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